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Today

• 2D Transformations
• “Primitive” Operations
• Scale, Rotate, Shear, Flip, Translate

• Homogenous Coordinates
• SVD
• Start thinking about rotations...
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Introduction

• Transformation: 
An operation that changes one configuration into another

• For images, shapes, etc.
A geometric transformation maps positions that define the object to 
other positions
Linear transformation means the transformation is defined by a linear 
function... which is what matrices are good for.
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Some Examples

Original

3
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Some Examples

Images from Conan The Destroyer, 1984

Original

Uniform Scale

Rotation

Nonuniform Scale
Shear
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Mapping Function
f(p) = p0

p = (x,y)
p

0 = (x0,y0)
Maps points in original image  
to point in transformed image 

Original Transformed

f

f�1
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Mapping Function
f(p) = p0

p = (x,y)
p

0 = (x0,y0)
Maps points in original image  
to point in transformed image 

Original Transformed

f�1

= c(f�1(p0)) = c(p)
c(p) = [195,120,58] c0(p0)
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Linear -vs- Nonlinear

Linear (shear)
Nonlinear (swirl)
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Geometric -vs- Color Space

Linear Geometric
(flip)

Color Space Transform
(edge finding)
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Instancing

RHW

M.C. Escher, from Ghostscript 8.0 Distribution
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Instancing

Carlo Sequin
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Instancing

RHW

• Reuse geometric descriptions
• Saves memory
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Linear is Linear
• Polygons defined by points
• Edges defined by interpolation between two points
• Interior defined by interpolation between all points
• Linear interpolation
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Linear is Linear
• Composing two linear function is still linear
• Transform polygon by transforming vertices

Scale

13
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Linear is Linear
• Composing two linear function is still linear
• Transform polygon by transforming vertices

f (x) = a+bx g( f ) = c+d f

g(x) = c+d f (x) = c+ad+bdx

g(x) = a0 +b0x
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Points in Space
• Represent point in space by vector in 
• Relative to some origin!
• Relative to some coordinate axes!
• The choice of coordinate system is arbitrary and should be convenient.
• Later we’ll add something extra...

Rn

Origin, 0

2

4

T]4,2[=pp= [4,2]T
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Basic Transformations
• Basic transforms are: rotate, scale, and translate
• Shear is a composite transformation!

Rotate

Translate

Scale

Shear  -- not really “basic”
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Linear Functions in 2D

x0 = f (x,y) = c1+ c2x+ c3y
y0 = f (x,y) = d1+d2x+d3y


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x0 = t+M ·x
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Rotations

Rotate
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Sin
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.707  -.707

.707   .707

y

x

45 degree rotation
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Rotations

• Rotations are positive counter-clockwise
• Consistent w/ right-hand rule
•Don’t be different...
•Note: 
• rotate by zero degrees give identity
• rotations are modulo 360 (or      )2π
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Rotations

• Preserve lengths and distance to origin
• Rotation matrices are orthonormal
•  
• In 2D rotations commute... 
• But in 3D they won’t!

Det(R) = 1 6=�1
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Scales
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Scales
•Diagonal matrices
• Diagonal parts are scale in X and scale in Y directions
• Negative values flip
• Two negatives make a positive (180 deg. rotation)
• Really, axis-aligned scales

Not axis-aligned...
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Shears

Shear
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Shears

• Shears are not really primitive transforms
• Related to non-axis-aligned scales
•More shortly.....
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Translation
• This is the not-so-useful way:

Translate
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Note that its not like the others.
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Arbitrary Matrices
• For everything but translations we have:

• Soon, translations will be assimilated as well

•What does an arbitrary matrix mean?

x0 = A ·x
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Singular Value Decomposition
• For any matrix,  A , we can write SVD:

  where Q and R are orthonormal and S is diagonal

• Can also write Polar Decomposition

  where     is also orthonormal

TQSRA =

A = PRSRT

P = QRTP
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Decomposing Matrices
•We can force P and R to have Det=1 so they are rotations
• Any matrix is now:
• Rotation:Rotation:Scale:Rotation
• See, shear is just a mix of rotations and scales
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Composition
•Matrix multiplication composites matrices

• Several translations composted to one
• Translations still left out...

BApp ='
“Apply A to p and then apply B to that result.”

CppBAApBp === )()('

uCpBtBAptApBp +=+=+= )('
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Composition

shear

x
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x
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shear

shear

Transformations built 
up from others

SVD builds from 
scale and rotations

Also build other 
ways

i.e. 45 deg rotation 
built from shears
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•Move to one higher dimensional space
• Append a 1 at the end of the vectors

• For directions the extra coordinate is a zero

Homogeneous Coordinates
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Homogeneous Translation
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Homogeneous Others
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Now everything looks the same...
Hence the term “homogenized!”
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Compositing Matrices

• Rotations and scales always about the origin
• How to rotate/scale about another point?

-vs-
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Rotate About Arb. Point
• Step 1: Translate point to origin

Translate (-C) 
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Rotate About Arb. Point
• Step 1: Translate point to origin
• Step 2: Rotate as desired

Translate (-C) 

Rotate (θ) 

38Don’t negate the 1...

• Step 1: Translate point to origin
• Step 2: Rotate as desired
• Step 3: Put back where it was

Rotate About Arb. Point

Translate (-C) 

Rotate (θ) 

Translate (C) 

pApRTTp ~~)('~ =−=
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Scale About Arb. Axis
•Diagonal matrices scale about coordinate axes only:

Not axis-aligned
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Scale About Arb. Axis
• Step 1: Translate axis to origin
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Scale About Arb. Axis
• Step 1: Translate axis to origin
• Step 2: Rotate axis to align with one of the coordinate 

axes
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Scale About Arb. Axis
• Step 1: Translate axis to origin
• Step 2: Rotate axis to align with one of the coordinate 

axes
• Step 3: Scale as desired

41
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Scale About Arb. Axis
• Step 1: Translate axis to origin
• Step 2: Rotate axis to align with one of the coordinate 

axes
• Step 3: Scale as desired
• Steps 4&5: Undo 2 and 1 (reverse order)
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Order Matters!

• The order that matrices appear in matters

• Some special cases work, but they are special
• But matrices are associative

• Think about efficiency when you have many points to 
transform...

A ·B 6= BA

(A ·B) ·C= A · (B ·C)
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Matrix Inverses
• In general:        undoes effect of  
• Special cases:
• Translation: negate     and 
• Rotation: transpose
• Scale: invert diagonal  (axis-aligned scales)
•Others:
• Invert matrix
• Invert SVD matrices  

A�1 A

tx ty
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Point Vectors / Direction Vectors
• Points in space have a 1 for the “w” coordinate
•What should we have for          ?
•  
• Directions not the same as positions
• Difference of positions is a direction
• Position + direction is a position
• Direction + direction is a direction
• Position + position is nonsense

a�b
w= 0
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Somethings Require Care

For example normals do not transform normally

M(a⇥b) 6= (Ma)⇥ (Mb)

48

Some Things Require Care
For example normals transform abnormally

nTt = 0 NfindtM = Mt such that nT
NtM = 0

47
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Some Things Require Care
For example normals transform abnormally

nTt = 0

nTt = nTIt = nTM�1Mt = 0

NfindtM = Mt such that nT
NtM = 0
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Some Things Require Care
For example normals transform abnormally

nTt = 0

nTt = nTIt = nTM�1Mt = 0

(nTM�1)tM = 0

nT
N = nTM�1

NfindtM = Mt such that nT
NtM = 0
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Some Things Require Care
For example normals transform abnormally

nTt = 0

nTt = nTIt = nTM�1Mt = 0

(nTM�1)tM = 0

nT
N = nTM�1

nN = (nTM�1)T

N = (M�1)T

NfindtM = Mt such that nT
NtM = 0

See book for details
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Suggested Reading

Fundamentals of Computer Graphics by Pete Shirley
• Chapter 6
• And re-read chapter 5 if your linear algebra is rusty!
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